

C09-PET-103/C09-TT-103/C09-RAC-103

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL—2016 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING PHYSICS

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** The velocity of a body is given by the equation V at^2 bt c. Find the dimensional formulae for A, B and C, when t is time.
- 2. State and explain Triangle law of vectors.
- **3.** Derive the expression for the range of a projectile in the case of oblique projection.
- 4. State the laws of static friction.

- **5.** Define Seconds pendulum and find the length of it, when $g + 9 + 8 \text{ m} / \text{sec}^2$.
- **6.** State the First and second laws of thermodynamics.
- 7. Define 'Reverberation and 'Reverberation Time'.
- 8. State and explain Hooke's law.
- **9.** If 30 ohms and 90 ohms are connected in left and right gaps in metre bridge experiment, find the balancing length.
- 10. Write any three applications of optical fibres.

PART—B

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Define scalar and vector products of two vectors and write two properties of each of them.
 - (b) Show if \overrightarrow{A} $3\overrightarrow{i}$ $2\overrightarrow{j}$ \overrightarrow{k} and \overrightarrow{B} \overrightarrow{i} $3\overrightarrow{j}$ \overrightarrow{k} are two adjacent sides of a parallelogram, then find the area of the parallelogram.
- **12.** (a) Show that the time of ascent is equal to time of descent in the case of vertically projected body.
 - (b) A shot is fired horizontally at a velocity of 200 m/sec. Find the magnitude and direction of velocity after 10 seconds.

13.	(a)	Define potential energy and kinetic energy.	3
	(b)	Show that KE $\frac{1}{2}mV^2$.	4
	(c)	The momentum of the body of mass 2 kg is 50 kg m/s. Find its kinetic energy.	3
14.	(a)	Derive the expression for displacement and velocity of the particle executing Simple Harmonic Motion (SHM).	6
	(b)	A particle is undergoing SHM passes through the mean position with a velocity 2 m/sec. Find the velocity of the particle at the point where its displacement is half the amplitude.	4
15.	(a)	State and explain gas laws.	6
	(b)	Write four differences between isothermal and adiabatic change.	4
16.	(a)	What is noise pollution? Write various causes of noise pollution and explain briefly the effects caused by noise pollution. 1+3+3=	=7
	(b)	What is an echo? How to minimize an echo?	3
17.	(a)	Explain surface tension with reference to molecular theory.	4
	(b)	State and explain different types of moduli of elasticity.	6
18.	(a)	State and explain Kirchhoff's laws. 2+2=	=4
	(b)	Define magnetic induction field strength. Derive the equation of couple on a bar magnet placed in uniform magnetic field.	=6